Web-app realization of Shor’s quantum factoring algorithm and Grover’s quantum search algorithm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Computation and Shor's Factoring Algorithm

The eld of quantum computation studies the power of computers that are based on quantum-mechanical principles. We give a brief introduction to the model of quantum computation and to its main success so far: Peter Shor's eecient quantum algorithm for factoring integers.

متن کامل

Quantum computation and Shor’s factoring algorithm

Current technology is beginning to allow us to manipulate rather than just observe individual quantum phenomena. This opens up the possibility of exploiting quantum effects to perform computations beyond the scope of any classical computer. Recently Peter Shor discovered an efficient algorithm for factoring whole numbers, which uses characteristically quantum effects. The algorithm illustrates ...

متن کامل

Fast versions of Shor’s quantum factoring algorithm

We present fast and highly parallelized versions of Shor’s algorithm. With a sizable quantum computer it would then be possible to factor numbers with millions of digits. The main algorithm presented here uses FFT-based fast integer multiplication. The quick reader can just read the introduction and the “Results” section. Supported by Schweizerischer Nationalfonds and LANL

متن کامل

Experimental NMR Realization of A Generalized Quantum Search Algorithm

A generalized quantum search algorithm, where phase inversions for the marked state and the prepared state are replaced by π/2 phase rotations, is realized in a 2-qubit NMR heteronuclear system. The quantum algorithm searches a marked state with a smaller step compared to standard Grover algorithm. Phase matching requirement in quantum searching is demonstrated by comparing it with another gene...

متن کامل

A Low-Resource Quantum Factoring Algorithm

In this paper, we present a factoring algorithm that, assuming standard heuristics, uses just (logN) qubits to factor an integer N in time L where L = exp((logN)(log logN)) and q = 3 √ 8/3 ≈ 1.387. For comparison, the lowest asymptotic time complexity for known pre-quantum factoring algorithms, assuming standard heuristics, is L where p > 1.9. The new time complexity is asymptotically worse tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TELKOMNIKA (Telecommunication Computing Electronics and Control)

سال: 2020

ISSN: 2302-9293,1693-6930

DOI: 10.12928/telkomnika.v18i3.14755